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ltro realisations are discussed for dual mode in–
line bandpass microwave filters which have
asymmetrically-valued couplings about the physical
centre of the filter. Advantages are gained in the
first type of realisation which has no realizability
conditions on the pattern of the transmission zeros in

the complex-plane representation of the transfer
function, and in the second which needs less coupling

elements.

Introduction

The most common method for realising a rational
transfer function in waveguide is to first synthesise

a cross-coupled double array prototype networkl(fig.1).

The network is a folded ladder network of
admittance inverters Ki and shunt capacitors Ci cross

coupled by further inverters K;. Fig. lb shows the

corresponding coupling and routing diagram for this
network, where the capacitors are depicted as nodes
intercoupled by forward- and cross-couplings Mij .
Fig. lC gives the coupling matrix for this generalised

cross-coupled network together with the formulae used

to generate the elements of the matrix from the
elements of the network. The procedure is equivalent

to scaling the internal capacitors of the network to

unity.
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Fig. 1. Cross coupled double array protot ype network
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Fig. 1b. Coupling and routing diagram
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Fig. lc. Coupling matrix and formulae

A dual mode filter may then be directly

synthesised from this coupling matrix. An 8th order
example is shown in fig. 2 where the coupling elements
are realised by slots or screws .

The structure has two major shortcomings; the
ingoing and outcorrring orthogonally polarised signals

will have to be separated, probably with an orthomode
transducer, and there is an isolation problem due to
the input and output coupling irises being in the

cavity.
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Fig. 2. Xth degree reflective dual mode filter

A solution to both these problems is to rotate the

coup ling matrix with similarity transformations unti 1

only those couplings exist that may be realised with the

available coupling devices of an ‘in-line’ or
‘propagating’ dual mode structure (fig, 3). This recon-

figuration procedure used to be achieved by computer-

aided optimisation but more recently analytic methods
have been derived for even-degree characteristics 6-12
inclusive. Attached to the formulae for these realisa-
tions are conditions related to the locations of the
transmission zeros of the transfer function in the

complex plane.
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Fig. 3. 8th degree in-line dual mode filter

These realizability conditions were first

encountered when attempting to realise with an in-line
symmetric structure, an 8th degree transfer character-

istic with a j-axis zero pair for an attenuation pole
pair and a real-axis zero pair for group delay self-

equalisation. The realizability conditions were
violated, and this prompted a study into the realisa-

tions of characteristics with asymmetrically-valued

coupling elements, and the result was two different
types of ‘in-line’ asymmetric structure:

i) the general asynmretric (GA) in-line structure
and ii) the cascade quadruplet (CQ) in-line structure.

The GA structure is so called because there are no

singularity-pattern-related realizability conditions
attached to the realisation process. The CQ structure

has alternate single-slot end cruciform-slot internal
irises along the length of the filter, thereby reducing

the number that have to be manufactured. The - CQ

structure does have realisation conditions but these

aPPear tO be different to those for the equivalently-
ordered symmetric structure. Both CQ and GA structures

are able to realise electrically asymmetric characte~
istics, such as single-ended filters for multiplexer
applications.

Coupling Matrix Reconfiguration

As with the symmetric-structure in-line realisation
process a series of j similarity transformations are
applled to the coupling matrix. For the rth rotation:
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M,= RFMr_, R; r=l,2,3... j

where Mris the coupling matrix resultant from the rth
rotation, MOis the original cross–coupled double array

coupling matrix (fig. lc) and R is the rotation matrix

as defined in fig. 4. RT is the transpose of R
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Fig. 5. 14th degree linear phase filter – GA structure
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The aim of the procedure is to apply a series of

similarity transformations to the coupling matrix,

starting with the cross-coupled double array coupling
matrix (MO)~ and ending up after the final(jth)roEation
with a coupling matrix (Mj)$ whose finite elements

correspond to the available coupling devices within an
in-line asymmetric structure,
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Table I is a list of the pivots and rotation
angles to be applied in order, to obtain asymmetric

in–line structures for dual mode filters of (even)

degrees 6 to 14 inclusive, The angle (]- of each

rotation is derived from the formula sh&n in Table I,
using the matrix elements from the couplin~ matrix.-
resultant from the previous rotation Fig. 6. Linear phase filter attenuation response
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Fig. 7. Linear phase filter group delay respmse— —
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Cascade Quadruplet Str.uctux~,, Degrees 6, 8 and 10

The 6th degree CQ structure is in fact the same as

the 6th degree GA structure, and further analysis is

unnecessary. The 8th degree is however a good deal

more complex to analyse but explicit formulae are given

in fig. 8 for converting the couplings of the original
double-array matrix into those for the CQ matrix. The
10th degree case uses the same formulae as the 8th
degree case, but two preliminary rotations are required,
as defined in Table II.
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Table I Pivotal positiom and rotation angles for gcnmall asymmetric in-line

realisatims, orders 6 (2) 14.

A 14th degree linear phase laboratory model

(fig. 5) was constructed and measured using the GA
realisation procedure. Centre frequency is 11.575 GHz

and bandwidth 80 MHZ, and the measured amplitude and

group delay responses are shown in figs 6 and 7.

Table IL 10th order preliminary rotations
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Fig. 8a. 8th order CQ coupling matrix Fig. 8b. 8th order CQ coupling

and routing diagram
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Fig. 8c. 8th order CQ coupling formulae

t~ = tanflg c, = cos (11etc

An 8th degree laboratory model (fig. 9) was also ‘con–
strutted and measured. The prototype transfer

function had a real-axis zero pair for group delay
equalisation, end a j-axis zero pair for attenuation
poles. This singularity pattern violates the

realisation conditions for the symmetric structure.

Centre frequency is 11.550 GRz, BW 120 MHz and the
amplitude and group delay responses are shown in
figs 10 and 11.

Conclusion

Procedures have been presented for the synthesis of
two types of asymmetric dual mode bandpass filters.
These procedures are very easy to program, and con–

sume negligible amounts of computer time. A laboratory
model has been constructed in each type of realisation
using transfer characteristics unrealizable with a

symmetric structure.
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