ASYMMETRIC REALISATIONS FOR DUAL-MODE BANDPASS FILTERS
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Summary

Two realisations are discussed for dual mode in-
line bandpass microwave filters which have
asymmetrically-valued couplings about the physical
centre of the filter. Advantages are gained in the
first type of realisation which has no realisability
conditions on the pattern of the transmission zeros in
the complex-plane representation of the transfer
function, and in the second which needs less coupling
elements.

Introduction

The most common method for realising a rational
transfer function in waveguide is to first synthe31se
a cross—coupled double array prototype network ! (fig. 1),

The network is a folded ladder network of
admittance inverters K; and shunt capacitors €; cross
coupled by further 1nverters K Fig. 1b shows the
corresponding coupling and routlng diagram for this
network, where the capacitors are depicted as nodes
intercoupled by forward- and cross—couplings M;; .
Fig. lc gives the coupling matrix for this generalised
cross~coupled network together with the formulae used
to generate the elements of the matrix from the
elements of the network. The procedure is equivalent
to scaling the internal capacitors of the network to
unity.

Ko/ 48 Kmf &7

¢
Ke7}/ 46K sg| 5

AA

Ky KA

Kor| £10Kki2| FUkas| =34k “

Fany
L7

Fig. 1. Cross coupled double array prototype network
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Fig. 1b. Coupling and routing diagram
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Fig. Lc. Coupling matrix and formulae

A dual mode filter may then be directly
synthesised from this coupling matrix. An 8th order
example is shown in fig. 2 where the coupling elements
are realised by slots or screws.

The structure has two major shortcomings; the
ingoing and outcoming orthogonally polarised signals
will have to be separated probably with an orthomode
transducer, and there is an 1solat10n problem due to
the input and output coupling irises being in the

same physical cavity.
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Fig. 2. 8th degree reflective dual mode filter

A solution to both these problems is to rotate the
coupling matrix with similarity transformations until
only those couplings exist that may be realised with the
available coupling devices of an 'in-line' or
'propagating' dual mode structure (fig. 3). This recon—
figuration procedure used to be achieved by computer-
aided optimisation but more recently analytic methods
have been derived for even—degree characteristics 6-12
inclusive. Attached to the formulae for these realisa-—
tions are conditions related to the locations of the
transmission zeros of the transfer function in the
complex plane.
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Fig. 3. 8th degree in-line dual mode filter

These realisability conditions were first
encountered when attempting to realise with an in-line
symmetric structure, an 8th degree transfer character-—
istic with a j-axis zero pair for an attenuation pole
pair and a real-axis zero pair for group delay seli-
equalisation, The realisability conditions were
violated, and this prompted a study into the realisa-
tions of characteristics with asymmetrically-valued
coupling elements, and the result was two different
types of 'in~line' asymmetric structure:

i) the general asymmetric (GA) in-line structure
and ii) the cascade quadruplet (CQ) in-line structure.

The GA structure is so called because there are no
singularity-pattern-related realisability conditions
attached to the realisation process. The CQ structure
has alternate single-slot and cruciform-slot internal
irises along the length of the filter, thereby reducing
the number that have to be manufactured. The CQ
structure does have realisation conditions but these
appear to be different to those for the equivalently-
ordered symmetric structure. Both CQ and GA structures
are able to realise electrically asymmetric characters:
istics, such as single—ended filters for multiplexer
applications.

Coupling Matrix Reconfiguration

As with the symmetric—structure in-line realisation
process a series of J similarity transformations are
applied to the coupling matrix. For the rth rotation:
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M, =R,-M,., RS ‘ r=1,23.;
where M, 1s the coupling matrix resultant from the rth
rotation, M,is the original cross—coupled double array
coupling matrix (fig. lc) and R is the rotation matrix

as defined in fig. 4. R” is the transpose of R
1 2 3 4 5 6 7 38
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Fig. 5. 14th degree linear phase filter — GA structure
Figure 4. Example of an 8 x § rotation matrix,
pivot [2,6]. angle 0
. . REJECTION (dB)
The aim of the procedure is to apply a series of of
similarity transformations to the coupling matrix,
starting with the cross—coupled double array coupling
matrix (M), and ending up after the final(jth)rotation 10
with a coupling matrix (M;), whose finite elements
correspond to the available coupling devices within an ©
in-line asymmetric structure.

General Asymmetric Structure sl

Table I is a list of the pivots and rotation
angles to be applied in order, to obtain asymmetric sof
in-line structures for dual mode filters of (even)
degrees 6 to 14 inclusive. The angle ¢, of each

rotation is derived from the formula shown in Table I, o ) L
using the matrix elements from the coupling matrix w0 S P aenve 20 (ke)
resultant from the previous rotation Fig. 6. Linear phase filter attenuation response
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Order | Rotation No. Pivot 0, = tan™" (k- My1o/M.iv)
N r [i4] ul u2 vl v2 k 75:
6 1 [2. 4] 2 5 4 5 +1 i
701
1 [4, 6] 3 6 3 4 —1 L
g 2 [2. 4] 2 7 4 7 | +1 L
3 [3. 5] 2 5 2 30 -1 “r
4 [5. 7] 4 7 4 5 -1 L
1 [46]] 4 7 6 7| +1 e
10 2 [6‘ 8] 3 8 3 6 -1 “ * ® ! usgscnz N RELMzIeE FREQ. (MHZ) “©
3 [7. 9] 6 9 6 7 -1 Fig. 7. Linear phase filter group delay response
! [ 9] 4 ? 4 3 =1 Cascade Quadruplet Structuxe, Degrees 6, 8 and 10
2 (3.5 31 10 s 110 | +1 * / . N8 > :
. 3 [2 4] 2 5 4 5 +1 L
4 [6, 8] 3 8 3 6 1 The 6th degree CQ structure is in fact the same as
S [7, 9] 6 9 6 7 ~1 the 6th degree GA structure, and further analysis is
6 [8.10] S 10 5 8 -1 unnecessary. The 8th degree is however a good deal
7 [o.11] 8 1t 8 9 -1 more complex to analyse but explicit formulae are given
| 6.10] s 0 5 e . in fig. 8 for conyerFing the couplings of the ?riginal
2 [4‘ 6] 4 i 6 1 +1 double=-array matrix into those for the CQ matrix. The
3 [7: 9] 4 9 4 7 —1 10th degree case uses the's?me formulae.a as the 8th .
4 £8.10] 7 10 7 8 _1 degree case, but two preliminary rotations are required,
14 5 [9.11] 6 11 6 9 —1 as defined in Table II.
6 [10.12] 9 12 9 10 -1
7 [5. 7] 4 7 4 5 -1
8 [7, 9] 6 9 6 7 -1
9 [9.11] 8 11 8 9 —1 : - =
10 [11,13] 10 13 10 11 -1 Rotation no.| Pivot 0, =tan" (+ M. /M,
T [i] ul u2 vl v2
Table 1. Pivotal positions and rotation angles for general asymmetric in-line
realisations, orders 6 (2) 14. 1 [3.7] 3 8 7 8
2 [4.6] 4 7 6 7

A 14th degree linear phase laboratory model
(fig. 5) was constructed and measured using the GA
realisation procedure. Centre frequency is 11.575 GHz
and bandwidth 80 MHz, and the measured amplitude and
group delay responses are shown in figs 6 and 7.

Table II. 10th order preliminary rotations
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Fig. 8a. 8th order CQ coupling matrix Fig. 8b. 8th order CQ coupling
and routing diagram
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Fig. 8¢. 8th order CQ coupling formulae
t; =tanf; c, = cosf,etc

An 8th degree laboratory model (fig. 9) was also 'con-
structed and measured. The prototype transfer
function had a real—axis zero pair for group delay
equalisation, and a j-axis zero pair for attenuation
poles. This singularity pattern violates the
realisation conditions for the symmetric structure.
Centre frequency is 11.550 GHz, BW 120 MHz and the
amplitude and group delay responses are shown in

figs 10 and 11.

Conclusion

Procedures have been presented for the synthesis of

two types of asymmetric dual mode bandpass filters.
These procedures are very easy to program, and con—
sume negligible amounts of computer time. A laboratory
model has been constructed in each type of realisation
using transfer characteristics unrealisable with a
symmetric structure,
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Fig. 9. 8th order pseudo-elliptic self-equalised filter — CQ structure
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Fig. 10. CQ filter attenuation response
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Fig. 11. CQ filter group delay response



